

02

Zenith PQC LAYER is a middleware layer providing

post-quantum cryptography (PQC) signing and

verification for blockchain transactions, independent

of the underlying chain.

It enables wallets and smart contracts to use

quantum-resistant signatures (e.g. Dilithium, Falcon,

SPHINCS+) while preserving compatibility with any

L1/L2. In effect, Zenith intercepts or augments normal

transaction flows to add a PQC layer without forking

the blockchain.

This deck outlines Zenith’s architecture, SDK,

supported algorithms, and use cases, combining

deep technical detail showing how Zenith addresses

the incoming quantum threat (Shor’s algorithm) by

standardising an on-chain PQ key registry and off-

chain signing library, and how it fits into existing

ecosystems.

03

Zenith is a developer-focused, chain-agnostic PQC
framework . It provides APIs (signPQC, verifyPQC, etc.)
and smart-contract tools so that any dApp or wallet
can switch on quantum-safe signatures.
Unlike chain-specific solutions, Zenith works with
Ethereum, Cosmos, Solana, etc. by handling signature
and call-data formatting externally.

The goal is to give Web3 projects a migration path
before “Q-Day” (when quantum computers break ECC).
Zenith’s angle is simplicity and broad compatibility:
developers just import Zenith SDK, and it will detect the
chain’s hash method (Keccak vs SHA3) and apply the
correct PQC scheme under the hood.

By using well-vetted NIST/PQC algorithms and offering a
public key registry, Zenith lets teams focus on building
features while quantum-proofing crypto signing.

Qunatum-
Proof Security

Developer
Centric-SDK

Future-Proof
Shield

Ecosystem
Enablement

Performance
Efficiency

Chain-Agnostic
Layer

04

Current crypto (ECDSA, EdDSA) rely on elliptic-curve discrete log. Shor’s

algorithm can break these once large-scale quantum computers exist.

Analysts now predict RSA-2048 (and by extension ECC256) could fall by

~2030 . The timeline has shifted from “if” to “when”.

Quantum Threat:

Data (private keys, sensitive transactions) could be harvested today and

decrypted later once quantum advances. As noted, the existence of

“harvest now, decrypt later” programs motivates adopting PQC early.

Store-Now Decrypt-Later:

NIST finalized its first PQC standards (KYBER, Dilithium, Falcon,

SPHINCS+, etc.) in 2024, and major projects (Algorand, Google, etc.) are

integrating PQC. Zenith leverages these vetted algorithms to meet the

growing demand.

NIST & Industry:

Organizations must start migrating now to avoid a “Y2Q” crisis, according

to Mosca’s risk framework. Zenith offers the necessary tools for an

orderly migration: protected wallets, PQC signatures on-chain, and

governance fallback if emergency migration (fork) is needed.

Mosca’s Theorem:

05

Web3 Wallets (like metamask , trust wallet etc) uses browser storage to

store the private key of the user when they set-up their wallet. The

encryption method that is used for storing the private key or when the

user sets up their own wallet password is PBKDF2-derived key + AES-

GCM.

PBKDF2(Password-Based Key Derivation Function 2) + AES-GCM is widely

used in wallets,password managers, and secure vaults. It converts human-

readable passwordinto a cryptographically strong key.

1. It provides salting (to prevent from rainbow attack - a table of hash values to

reverse engineer plain passwords)

2. Provide a specific number of iteration as input - the iterations increase the

computational cost, making brute-force attacks more difficult.

3. A hash function (SHA-256) - cryptographic hash functions that will take the

plain input password and convert it into 256-bits hash . Its extremely difficult to

reverse engineer the hash with the normal computer but its very easy for a

quantum computer to break it within seconds .

How its is being used ?

06

Wallets hold private keys (secret numbers) encrypted by your

password. The private key is used to sign transactions (prove you own

coins). Transaction signing uses public-key cryptography (e.g. ECDSA

on secp256k1 for Bitcoin/Ethereum addresses). Encryption of the wallet

file (usually AES-256) protects the key with your password, but the

main protection is in the key’s math lock.

A crypto wallet works like a safe: the private key is the combination,

and signing a transaction is stamping with it. Files may be AES-

encrypted, but real security relies on cryptography (ECDSA), which

prevents signature forgery without the private key.

Quantum computers using Shor’s algorithm can break elliptic-curve

cryptography, exposing private keys once public keys appear on-chain.

This threatens all classical wallets (MetaMask, Ledger, hardware). Cold

storage offers no safety if keys were ever used. Additionally, Grover’s

algorithm boosts quantum miners, enabling 51% attacks in Proof-of-

Work and forged votes in Proof-of-Stake.

Right now, your wallet’s lock (ECDSA) is considered unbreakable by

classical computers. However, a quantum “super-computer” could

systematically break these locks. It’s like having a super lock-picker

that can try all combinations in seconds . Every used address (public

key) becomes a beacon to the thief. Even mining can be attacked: a

quantum rig would solve the mining puzzle much faster, letting one

miner dominate . In short, current wallets are not future-proof.

07

Hundreds of Millions of Wallets: Chain-analysis reports >400 million

cryptocurrency wallets with balances exist today . Almost all rely on

vulnerable ECC/ECDSA.

Example - Bitcoin Exposure: Over 10 million Bitcoin addresses with

funds have exposed public keys, representing ~$648 billion of BTC

at risk. All At Risk in Theory: That’s a huge portion of the crypto

economy. An attacker with a working quantum computer could, in

principle, break any of these wallets.

To appreciate the scale: there are well over 400 million active

crypto wallets (with non-zero balances).Project Eleven (a PQC

startup) notes that just Bitcoin has >10 million UTXO addresses

with public keys exposed.

In practice this means billions of dollars of crypto could be

vulnerable to future quantum theft. The market is huge, and almost

no wallet is currently safe from quantum attacks.

08

ECC-based signatures are not quantum-safe. A large quantum (with ~1
million qubits) can run Shor’s algorithm to recover private keys.

Quantum Vulnerability:

Popular chains use one signature method (e.g. Ethereum/BN256 or
Ed25519). A future quantum break would compromise all funds unless
preemptively migrated.

Single Point of Failure:

ECDSA/EdDSA signatures are small (64 bytes) and fast, but have no
fallback. They also lack flexible post-compromise features like key
rotation or social recovery.

Key Sizes & Usage:

Some sectors (finance, government) already plan for post-quantum
compliance. Web3 must align, or risk obsolescence.

Regulatory/Compliance:

09

Zenith introduces a transparent PQC signing overlay: developers integrate

Zenith’s SDK into wallets and services so that every transaction is signed

twice (once normally, once with PQC) or with a hybrid scheme. There is

no need to change consensus or transaction format; Zenith simply

appends/combines PQC signature data according to a standard format.

Zenith hooks into existing signing calls (signTransaction, signTypedData)

and outputs a special payload including the PQ signature. Smart contracts

can then verify PQC signatures via standard calls or precompiles.

Overlay Design:

Works on EVM (Ethereum, BSC, etc.), Cosmos (Tendermint), Solana, etc.

The SDK abstracts the hashing differences

Chain-Agnostic

Built on liboqs and open standards, so any algorithm (current or future)

can be added. SDKs in TypeScript, Rust, and WASM allow easy binding.

Open Source & Pluggable

10

Zenith PQC LAYER as middleware :

A wallet sends raw calldata to Zenith instead of the
node. The PQC Layer hashes it (Keccak256/SHA-3),
signs with signPQC, and appends the PQ signature.
The blockchain verifies it via Zenith’s registry smart
contract. If valid, the transaction executes; if invalid,
it reverts.

12

A lattice-based signature. Offers strong security with moderate signature

sizes (e.g. ~1320 bytes for Dilithium2). Fast verification, suitable for most

use cases.

CRYSTALS-Dilithium:

Another lattice (NTRU) signature with compact size: Falcon-512

signatures are ~897 bytes. Smaller keys/signatures but more compute to

sign, making it good when bandwidth is tight.

Falcon:

SPHINCS+:

Zenith supports the leading NIST-PQC signature
schemes through liboqs:

Zenith’s SDK supports per-key algorithm choice and hybrid signing.
Developers use unified Zen APIs via liboqs, ensuring automatic updates as
NIST evolves. Falcon suits EVM gas limits, while off-chain messaging
supports broader schemes.

14

For browser and Node environments. The WASM module is wrapped
by a TypeScript interface. This lets Web3 front-ends (dApps,
browser wallets) perform PQC signing without trust issues.

WebAssembly (WASM):

For back-end or CLI tools, native Rust crates (oqs-sys/oqs) provide
fast, safe APIs. Servers or desktop wallets can use these directly.

Rust/Native:

The oqs Rust crate offers safe wrappers. In TypeScript, the WASM
functions are exposed via npm packages. In Solidity, public keys are
simply bytes storage.

The multi-layer approach means Zenith works anywhere: a React
dApp (WASM), a Node script, or a Rust program all use the same
underlying PQ algorithms.

Language Bindings:

15

Zenith uses a smart contract registry to map user accounts to their PQ
public keys or hashes. This can be a simple Solidity contract.

A user first calls registerKey(sha256(PublicKey)), committing their PQ public
key or its hash on-chain. This pattern mirrors Ethereum Magicians’ proposal
for post-quantum account recovery.

Once stored, any smart contract can fetch and use commitments[user] to
verify a PQ signature (by checking a preimage or using a zk-proof). Zenith
provides examples of such Solidity code. In practice, the registry should be
governed (upgradable or multisig) so that keys can be revoked or format-
upgraded via DAO governance.

CALLDATA FORMATTING STANDARDS
Transactions must carry the PQ signature data in a standardized way.
Zenith proposes a convention such as:

Zenith appends algoID+pqSignature to calldata. Smart contracts run transfer
logic, then call verifyPQCSignature, validating against stored PQ keys via liboqs.
Standardization ensures cross-chain interoperability, with off-chain tooling like
Ethers.js handling encoding seamlessly.

16

Zenith’s TypeScript SDK uses liboqs bindings to generate PQC keys,
sign transactions, and register them on-chain. Developers leverage
Ethers.js to call registerKey, with registry storing full keys or hashed
commitments standardized to NIST/oqs constants.

This contract demonstrates hybrid signing: a transaction could also carry
an ECDSA signature, which the contract would check (not shown) before
or after verifying the PQC signature. To interact with a centralized registry
contract, a contract can call an interface. For example.

On EVM chains, a smart contract can fetch a user’s PQ public key from
the registry and verify a PQC signature (typically via a precompile or
library). The example below shows a simple contract that stores user PQ
public keys and pseudo-verifies a PQ signature.

17

On Cosmos (Tendermint) chains, transactions use SHA-256 hashing, and
the PQC registry can be a CosmWasm contract or native module. In Rust
(CosmWasm) code, one can use the oqs crate to verify PQC signatures.
For example:

This snippet uses oqs::sig::Sig::verify to check a Dilithium-2 signature.
The contract first queries the registry for the user’s public key, then
applies verify_pqc_signature. (In a production CosmWasm contract, JSON
query messages and error handling would be fleshed out.) Zenith’s SDK
abstracts these details, auto-hashing with SHA-256 for Cosmos chains.

18

19

Zenith’s crypto relies on liboqs (Open Quantum Safe
library). Key points:

It’s a portable C library with all NIST PQC schemes. The oqs-sys Rust

crate will compile liboqs for you (or you can link a system liboqs). It

supports cross-compilation to WASM.

Building liboqs:

We mainly use the “SIG” API. For each algorithm:

API Usage:

liboqs is open-source and regularly reviewed. Zenith pins specific versions

and runs fuzz tests. As with any crypto library, we watch for updates

(NIST vulnerabilities or patches). All memory with keys/signatures is

zeroized after use to prevent leaks. The WASM modules are audited to

ensure no side-channel leaks in JavaScript environments.

Security Notes :

When compiling to WASM for browsers, liboqs’s algorithms fit well – just

include only needed algorithms to keep module size small. Zenith’s build

automates this selection.

WASM Constraints:

These use SHA-256 hashing and different signature schemes. Zenith’s
SDK auto-detects this and uses, e.g., SHA-256 hashing before PQ signing.
The on-chain registry contract can be a Cosmos module or smart
contract on CosmWasm.

23

On Ethereum/BSC/Polygon, Zenith transactions include PQ signatures in

calldata. Verification can use existing opcodes or a planned precompile

(e.g. EIP proposals for lattice-based verify). Because Zenith only adds

calldata, it works seamlessly with EVM-based smart contracts.

EVM Chains:

Tendermint/Cosmos Chains:

Non-EVM chains (Solana uses Borsh, Ed25519) can integrate Zenith by
modifying the client-side code: when building a transaction message, pass
it through Zenith’s signPQC before finalizing. The registry can be on-chain
account data.

Zenith’s key is that no change to consensus rules is needed on any chain.
It purely extends the client and contract logic. Any chain that allows
arbitrary byte arrays in transactions or accounts can support Zenith.

Solana & Others Non-EVM :

Zenith Wallet is a next-generation, non-custodial crypto wallet

built to redefine security and efficiency in Web3. Unlike

competitors, it integrates multiple DEX aggregators (1inch,

Paraswap, Matcha, OpenOcean) to guarantee the lowest trading

fees with a flat 0.5% service fee cheaper than any other wallet in

the market.

30

With multi-chain support and upcoming Solana integration, Zenith Wallet

enables seamless cross-chain swaps. Features like automated trading

triggers, instant fiat conversion, and direct Visa/Mastercard integration

make it a complete gateway for mass Web3 adoption.

Zenith Gaming is the interactive entertainment arm of the Zenith

ecosystem, focused on delivering cinematic, culturally rich

experiences across PC, mobile, and console (PS5) platforms. Our

development process combines in-house IP creation with custom

game builds for enterprise and Web3 clients, leveraging the

latest in gaming engines, latest integration frameworks with

post-quantum secure transaction systems.

30

By combining technical mastery, blockchain-native design, and platform

versatility, Zenith Gaming positions itself as a full-stack Web3 gaming

studio capable of delivering products that resonate globally — whether in-

house IPs or bespoke client experiences.

Zenith Visa bridges crypto and real-world spending with instant

on-chain to fiat conversion, accepted globally wherever

Visa/Mastercard work. Users spend $ZEN, stablecoins, or crypto

seamlessly, earning rewards in $ZEN with token-gated premium

perks. A 1,000-user pilot in 2025 demonstrates strong traction,

making Zenith Visa a high-impact adoption driver.

30

$ZEN is the native utility token fueling the Zenith ecosystem. It powers

wallet fees, PQC SDK licensing, card rewards, in-game economies, and

governance. With strategic distribution to developers and ecosystem

participants, $ZEN ensures adoption across wallets, payments, and

gaming establishing itself as the backbone of Zenith’s quantum-secure

Web3 infrastructure.

30

32

2025 - LAUNCH YEAR

Zenith Wallet (multi-aggregator for

cheapest fees)

Zenith PQC Layer v1.0 (SDK for L1/L2)

Zenith Visa Card launch (pilot)

Kishkindha (The Tale of 2 Brothers) - PC

game launch

$ZEN Token Launch - December, 2025

info@zenithstudio.live

WEBSITE

TWITTER𝕏

https://www.zenithstudio.live/
https://x.com/zenith__studio

